
DRAFT COPY

 Programmers Guide to
GARA

March 2000

DRAFT COPY2

Contents
About GARA ...3

Reservations...4
Types of Network Reservations..5

Using GARA..6
Initializing GARA ...6
Describing a Reservation Request ..6
Creating a Reservation ..8
Modifying a Reservation...8
Querying a Reservation...9
Binding a Reservation ...9
Using Callbacks...10
Canceling a Reservation..11
Deactivating GARA ..11

GARA Reference...11
Constants..11
Data Structures ..14
Functions..14

Appendix: Example Program Using GARA...19

DRAFT COPY 3

Note: Before you read about programming with GARA, you should have at least a passing
familiarity with Globus. You can learn more about Globus at http://www.globus.org. This guide
concentrates on describing GARA from a programmer’s perspective. If you need information on
installing and configuring GARA, please see the Administrators Guide to GARA. If you would
like more information about the research being done with GARA, please see the papers available
at the Globus web site.

About GARA
The GARA architecture provides programmers with convenient access to end-to-end quality of
service (QoS) for programs. To do so, it provides mechanisms for making QoS reservations for
different types of resources, including computers, networks, and disks. A reservation is a
promise from GARA that an application will receive a certain level of service from a resource.
For example, a reservation may promise a certain bandwidth on a network or a certain
percentage of a CPU.

The GARA architecture is defined as a layered architecture with three levels of APIs and one
level of low-level mechanisms:

Note that ÒGARAÓ refers to two things: the ÒGARA Architecture,Ó which refers to the entire
diagram above, and the ÒGARA API,Ó which is the API for making a single reservation. This
document describes just the GARA API; the other portions of GARA are described elsewhere.1

1 At the time of this writing, these documents are still in preparation. However, many of the details can be learned
from the GARA research papers that are available on the Globus web page: http://www.globus.org.

High-Level APIs
Adds end-to-end reservation mechanisms for
networks, by making multiple reservations.

GARA API
Adds ability to make remote, authenticated (GSI)
reservations

Local Reservation API
Makes reservations with diverse resource types;
within single trust domain.

Resource Manager
Controls admission and enforces reservations for
particular resources.

Figure 1 − GARAÕs layered architecture

DRAFT COPY4

As a programmer, you will most likely be using the GARA API, and not the LRAM API, so it
does not need to concern you further.

The GARA API has two interesting advantages. First, it allows you to make reservations either
in advance of when you need them or right at the time that you need themÑan immediate
reservation. Second, you use the same API to make and manipulate a reservation regardless of
the type of the underlying resource, thereby simplifying your programming when you need to
work with multiple kinds of resources.

The GARA API can be considered a remote procedure call mechanism to communication with a
resource manager. A resource manager controls reservations for a resource: it performs
admission control and controls the resource to enforce the reservations. Some resources already
have the ability to work with advanced reservations, so the resource manager is a simple
program. Most resources cannot deal with advanced reservations, so the resource manager tracks
the reservations and does admission control for new reservation requests. Much of the research
in GARA has focused on building useful resource managers.

As you begin using the GARA API, you may discover that you need to make multiple
simultaneous reservations. In the near future, high-level APIs to assist you with this sort of co-
reservation task will be available.

Reservations

Reservations have five important attributes:

• Start Time: The time that the reservation begins. A reservation always has a start time, even
if it is an immediate reservation, which begins as soon as you make the reservation. The start
time is in seconds since 00:00:00 UTC, January 1, 1970. For example, if you want an
immediate reservation, you can just call the Unix time() function.

• Duration: How long the reservation lasts, in second. All reservations must specify how long
they will last, so that GARA can do appropriate admission control for reservations granted in
advance.

• Reservation Type: The type of underlying resource, such as a network, a computer, or a disk.

• Reservation Subtype: A particular kind of reservation. See Types of Network Reservations,
below.

• Resource-Specific Parameters: Parameters that are unique to each type of resource, such as
bandwidth for a network reservation.

When you request a reservation, you specify these attributes. If your reservation request is
accepted, you are provided with a reservation handle. This is an opaque string that uniquely
identifies your reservation. All future operations require you to provide this handle.

DRAFT COPY 5

Once you have a reservation handle, you can perform several operations with that handle:

• Modify Reservation: You can request a modification to your reservation. For instance, you
can increase the bandwidth that you have requested.

• Cancel Reservation: You can inform GARA that you no longer need a reservation, by
canceling it.

• Claim Reservation: When you are ready to use a reservation, you must claim the reservation.
This is known as binding a reservation because you specify run-time parameters that you did
not know when you created the reservation, such as ports being used for the network
reservation.

• Query Reservation: You can discover the status of a reservation by polling it. The status
includes whether the start of the reservation has begun and whether the reservation has been
claimed.

• Register Callback: You can provide a function that will be called when the status of a
reservation changes or when GARA wishes to provide extra information to your program.
This information may include notification that your reservation appears to be too small. You
can react to this information by modifying your reservation or changing your applicationÕs
behavior.

Types of Network Reservations

GARA implements several types of network reservations (see the reservation subtype above):

• Foreground Reservations: These are also called normal reservations. They are reservations
for a specific bandwidth.

• Background Reservations: These are also called bulk-transfer reservations. A bulk transfer
reservation shares all of the bandwidth not claimed by foreground reservations. The amount
of bandwidth assigned to a particular reservation may change over time as foreground
reservations begin and end. Programs are notified what the current bandwidth assignment is
through a callback.

• Low-Latency: UDP flows that would like to avoid delays due to traffic shaping can request
low-latency reservations.

DRAFT COPY6

Using GARA
GARA is provided as a library written in C. Any language that can link to C libraries can use
GARA. There is also a Java implementation, but it is not described here. To use GARA, you will
first need to have linked your program with these libraries. You will need to include
Òglobus_gara_client.hÓ to provide prototypes for the GARA functions, and related constants.
You will also need to include Ò g l o b u s _ c o m m o n . h Ó, to gain access to
globus_module_activate() and globus_module_deactivate().

Initializing GARA

Before you can use GARA, you need to initialize it. GARA is initialized like other modules in
Globus, using the globus_module_activate:

globus_module_activate(GLOBUS_GARA_CLIENT_MODULE);

Describing a Reservation Request

Reservation attributes are described using the Resource Specification Language (RSL). An RSL
string is simply a list of attribute-value pairs that looks like

&(attribute-1=value-1) (attribute-2=value-2) É (attribute-N=value-N)

An example RSL string for requesting a network reservation for 150Kbps between looks like
this:

&(reservation-type=network)
 (start-time=953158862)
 (duration=3600)
 (endpoint-a=140.221.48.146)
 (endpoint-b=140.221.48.106)
 (bandwidth=150)

Note that this string was spaced out on several lines for readability, while RSL strings do not
have newlines in them.

Below is a list of attributes that may be used to specify a reservation. The universal attributes are
for all types of reservations, while the other attributes are for specific types of resources. Note
that the compute resource attributes are mutually exclusive, and currently only the percent-cpu
attribute is used.

DRAFT COPY 7

Attribute Units Default Req? Description
Universal Attributes
reservation-type Y Allowable values: ÒnetworkÓ, ÒcomputeÓ, or

ÒdiskÓ.
reservation-subtype Currently valid only for network reservations.

If it is not specified, it is a foreground
reservation. Otherwise it is one of
ÒbackgroundÓ or Òlow-latency Ó. For more
information, see Types of Network Reservations
above.

start-time secs Y What time the reservation starts in seconds
since 00:00:00 UTC, January 1, 1970. If you
specify Ònow Ó, then the reservation will begin
immediately.

duration secs 100 Length of the reservation, in seconds.
Compute Resource Attributes
percent-cpu % 20 Percentage of the CPUÕs time given to the

reserved process.
Network Resource Attributes
endpoint-a Y The machine at one end of the network flow.

This must be specified as a dotted IP address,
such as 140.221.48.162.

endpoint-b Y The machine at the other end of the network
flow. This must be specified as a dotted IP
address, such as 140.221.48.162.

bandwidth Kbps 8 How fast a flow can transfer data.
directionality** bidirectional unidirectional-ab: reservation for traffic

from a to b.
unidirectional-ba: reservation for traffic
from b to a.
bidirectional: reservation for traffic in both
directions.

Disk Resource Attributes
size KB The storage space needed for a single file.
bandwidth Kbps 8 How fast data can be read/written to a file.

** directionality is ignored in the current (March 2000) version of GARA. Right now,
Òunidirectional-abÓ is assumed.

DRAFT COPY8

Creating a Reservation

Before you can create a reservation, you will need to specify your reservation. See Describing
your Reservation Request above. Then you request your reservation with
globus_gara_reservation_create (spacing adjusted for clarity):

Before you can create a reservation, you will need to specify your reservation. See Describing
your Reservation Request above. Then you request your reservation with
globus_gara_reservation_create (spacing adjusted for clarity):

int error;
 char *request_rsl = Ò&(reservation-type=network)

 (start-time=953158862) (duration=3600)
 (endpoint-a=140.221.48.146)
 (endpoint-b=140.221.48.106)
 (bandwidth=150)Ó;
char *reservation_handle;

error = globus_gara_reservation_create(gatekeeper_contact, request_rsl,
 &reservation_handle);

Note that the gatekeeper contact is a string obtained from another location, such as the MDS. An
example gatekeeper contact may look like

dslnet2.mcs.anl.gov:754:/C=US/O=Globus/O=Argonne National Laboratory/OU=Mathematics and Computer
Science Division/CN=dslnet2.mcs.anl.gov

For more information on gatekeeper and gatekeeper contacts, see http://www.globus.org, and
read about GRAM.

Modifying a Reservation

Modifying a reservation is similar to creating a reservation, except that instead of providing a
gatekeeper contact, you provide the handle to the reservation that you created earlier:

int error;
char *request_rsl = Ò&(reservation-type=network)

 (start-time=953158862) (duration=7200)
 (endpoint-a=140.221.48.146)
 (endpoint-b=140.221.48.106)
 (bandwidth=200)Ó;

error = globus_gara_reservation_create(reservation_handle, request_rsl,
 &reservation_handle);

DRAFT COPY 9

Querying a Reservation

If you would like to find out the status of a reservation, you can query it:

int error;
int status;

error = globus_gara_reservation_status(reservation_handle, &status);

If there is not an error, the status will be one of

GLOBUS_GARA_RESERVATION_STATUS_NOT_STARTED
 GLOBUS_GARA_RESERVATION_STATUS_NOT_STARTED_BOUND
 GLOBUS_GARA_RESERVATION_STATUS_READY_NOT_BOUND
 GLOBUS_GARA_RESERVATION_STATUS_ACTIVE
 GLOBUS_GARA_RESERVATION_STATUS_FINISHED

A reservation is bound if a previous call to globus_gara_reservation_bind succeeded. A
reservation is ready if the current time is later than the start time, and the duration has not yet
elapsed. A reservation is active if it is both ready and bound. A reservation is finished if the
current time is later than the start time plus the duration.

Binding a Reservation

When you are ready to use a reservation, you need to bind it in order to begin using the
reservation:

int error;
char *bind_paramters = Ò&(which-endpoint=a)(endpoint-a-port=1234)

 (endpoint-b-port=5678)Ó;

error = globus_gara_reservation_bind(reservation_handle,
 &bind_parameters);

Notice that the run-time parameters are specified as an RSL string. Currently, bind parameters
are only specified for compute and network reservations. For compute reservations, the only
parameter to be specified is process-id, which specifies the process ID of the process that will
be receiving the reservation.2 For network reservations, there are three parameters:

• which-endpoint: If the reservation is being bound from a machine involved in the
reservation, this specifies which machine it is. The machine is either Òa Ó or Ò bÓ, and it
matches what was specified in the reservation request. If a different machine is binding the
reservation on behalf of the processes involved, simply use Òa Ó.

2 Note that the process ID is relevant only if you are using the DSRT resource manager to control scheduling for
processes with reservations.

DRAFT COPY10

• endpoint-a-port: This is the port used by endpoint-a, as specified in the reservation
request. Because the current GARA implementation assumes that data is being sent from
endpoint-a to endpoint-b, this will be the port used by the sender.

• endpoint-b-port: This is the port use by endpoint-b, as specified in the reservation
request. Because the current GARA implementation assumes that data is being sent from
endpoint-a to endpoint-b, this will be the port used by the receiver.

Note that a reservation is not considered active until it is bound. Once a reservation has both
begun and been bound, the GARA do whatever setup is necessary in order to ensure that the
reservation is granted. It is okay if the reservation is bound before it has begun, because GARA
will automatically enable the reservation once it begins.

If you will temporarily not be using a reservation but you will resume using it before it has
expired, you can unbind the reservation:

int error;

error = globus_gara_reservation_unbind(reservation_handle);

Once you unbind a reservation, you may bind it again.

Using Callbacks

If you would like to be informed whenever the status of a reservation changes (see Querying a
Reservation above), you can use a callback function. Once you register a callback function, it
will immediately be called once, to provide the current status, and will be called every time the
status changes afterwards.

First you need to create a callback function:

static void callback_handler(
 char *reservation_handle,

 globus_gara_reservation_event_t event,
 void *user_parameter)
{
 /* Place code here to examine the event */
 /* If it is a status event, event.event_type will be

 GLOBUS_GARA_STATUS_EVENT, and the status will be in
 event.event. */

 if (event.event == GLOBUS_GARA_STATUS_EVENT)
 {
 if (event.event_type == GLOBUS_GARA_RESERVATION_STATUS_FINISHED)
 {
 /* React to reservation being finished */
 }
 }
 return;
}

DRAFT COPY 11

Then you need to register this function with GARA. You need to register the function for each
reservation that you wish to monitor:

int error;

error = globus_gara_reservation_callback_register(reservation_handle,
 callback_handler, NULL);

Note that the last parameter you pass to the registration function will be forwarded as the
user_parameter to your callback function.

If you would no longer like to have a function called when the status changes, you can unregister
it:

int error;

error = globus_gara_reservation_callback_remove(reservation_handle,
 callback_handler);

Note you can register multiple callback functions for a single reservation handle.

Canceling a Reservation

When you are all done using a reservation, you should cancel it, using the reservation handle that
you obtained when you created the reservation.

globus_gara_reservation_cancel(reservation_handle);

When you cancel a reservation, all of the callbacks that have been registered for that reservation
will automatically be cancelled.

Deactivating GARA

When you have finished using GARA, you should deactivate it, to allow it to clean up:

globus_module_deactivate(GLOBUS_GARA_CLIENT_MODULE);

GARA Reference

Constants

DRAFT COPY12

This section describes the constants used by the GARA API. You will find them all either in
Òglobus_gara_client.h Ó or in Òglobus_gara_common.h Ó. Note, however, that
Òglobus_gara_client.hÓ includes Òglobus_gara_common.hÓ for you.

Errors

GLOBUS_GARA_ERROR_NONE
No error has occurred.

GLOBUS_GARA_ERROR_UNKNOWN
An error has occurred, but GARA just doesnÕt know what it is.

GLOBUS_GARA_ERROR_MODULE_NOT_ACTIVE
You have tried to use GARA without activating the module first.

GLOBUS_GARA_ERROR_BAD_PARAMETER
A bad parameter, such as a NULL reservation handle, has been passed to a GARA
function.

GLOBUS_GARA_ERROR_ZERO_LENGTH_RSL,
An RSL string was provided, but it is empty. It may be that this is never returned.

GLOBUS_GARA_ERROR_BAD_RSL,
There is an error, probably a syntax error, in the RSL string.

GLOBUS_GARA_ERROR_BAD_RESERVATION_HANDLE
The reservation handle that was provided isnÕt really a reservation handle.

GLOBUS_GARA_ERROR_CONNECTION_FAILED
GARA was unable to connect to the gatekeeper.

GLOBUS_GARA_ERROR_AUTHORIZATION
GARA was unable to authorize with the gatekeeper. Did you run grid-proxy-init?

GLOBUS_GARA_ERROR_GATEKEEPER_MISCONFIGURED
I donÕt think this is ever reported, so it probably doesnÕt mean anything.

GLOBUS_GARA_ERROR_VERSION_MISMATCH
I donÕt think this is ever reported, so it probably doesnÕt mean anything.

GLOBUS_GARA_ERROR_INVALID_REQUEST
I donÕt think this is ever reported, so it probably doesnÕt mean anything.

GLOBUS_GARA_ERROR_UNKNOWN_RESERVATION_TYPE
The reservation type in the RSL reservation request must be one of ÒnetworkÓ,
ÒcomputeÓ, or ÒdiskÓ, but it wasnÕt.

GLOBUS_GARA_ERROR_PROTOCOL_FAILED
There was a problem communicating with the gatekeeper.

GLOBUS_GARA_ERROR_MISSING_RESERVATION_TYPE
The reservation type in the RSL reservation request wasnÕt provided.

GLOBUS_GARA_ERROR_OUT_OF_MEMORY
A request for memory failed. YouÕre in trouble!

GLOBUS_GARA_ERROR_MISSING_ENDPOINT_A
A network reservation request didnÕt specify endpoint-a.

GLOBUS_GARA_ERROR_MISSING_ENDPOINT_B
A network reservation request didnÕt specify endpoint-b.

GLOBUS_GARA_ERROR_CANT_MAKE_RESERVATION

DRAFT COPY 13

The reservation canÕt be made. Probably there are other reservations already at the same
time, and there isnÕt room for your reservation.

GLOBUS_GARA_ERROR_PROBLEM_WITH_LRAM
The most likely cause of this error is that the resource manager is not running or that
communication with it has failed.

GLOBUS_GARA_ERROR_HTTP_UNPACK_FAILED
A serious protocol error happened, probably a programming error on our part, not yours.

GLOBUS_GARA_ERROR_BAD_RESERVATION_OBJECT
This error probably means that you tried to make a network reservation for an endpoint
that the resource manager hasnÕt been configured to allow reservations for.

GLOBUS_GARA_ERROR_GARA_SERVICE_EXECUTABLE_NOT_FOUND
The gatekeeper is misconfigured. In particular, it canÕt find the
globus_gatekeeper_gara_service executable.

GLOBUS_GARA_ERROR_CANT_CONTACT_RESOURCE_MANAGER
The resource manager is unavailable. Check to make sure that itÕs running.

GLOBUS_GARA_ERROR_UNKNOWN_GRAM_ERROR
Some error in the underlying ÒGRAM GatekeeperÓ protocol has failed.

GLOBUS_GARA_ERROR_MISSING_RESERVATION_SUBTYPE
I donÕt think this is ever reported, so it probably doesnÕt mean anything.

Callback and Status Constants

The following events are reported to callbacks:

GLOBUS_GARA_STATUS_EVENT
The status of the reservation has changed. See the lists of status constants below.

GLOBUS_GARA_CHANGE_EVENT
The reservation has been preempted, or the reservation quantity (like bandwidth) has
changed. See the list changes below.

GLOBUS_GARA_MONITOR_EVENT
Not yet used.

The following statuses can be reported to callbacks on a status event or in response to a user
calling globus_gara_reservation_status.

GLOBUS_GARA_RESERVATION_STATUS_NOT_STARTED
The reservation has not yet begun (the current time is before the start time).

GLOBUS_GARA_RESERVATION_STATUS_NOT_STARTED_BOUND
Although the reservation has not yet begun, the reservation has been bound.

GLOBUS_GARA_RESERVATION_STATUS_READY_NOT_BOUND
The reservation has begun (the current time is after the start time) but canÕt yet be used
because it has not been bound yet.

GLOBUS_GARA_RESERVATION_STATUS_ACTIVE
The reservation has begun and been bound.

GLOBUS_GARA_RESERVATION_STATUS_FINISHED

DRAFT COPY14

The reservation is over. That is, the current time is greater than the start time plus the
duration of the reservation.

The following changes can be reported on a CHANGE_EVENT:

GLOBUS_GARA_RESERVATION_CHANGE_PREEMPTED
The reservation has been preempted because a more important reservation has occurred.
Currently, this will not be reported, because preemption has not yet been implemented.

GLOBUS_GARA_RESERVATION_CHANGE_QUANTITY
The quantity (like bandwidth) has been changed. This occurs for bulk transfer
reservations.

Data Structures

This is a description of the data structures used by GARA.

The Event Data Structure

typedef struct
{
 int event_type;
 int event;
 double quantity;
} globus_gara_reservation_event_t;

This structure is provided to callback functions. The event type and event are constants from the
list above. The quantity is provided when the event is a change event indicating that the quantity
has changed.

Callback functions

typedef void (*globus_gara_reservation_callback_t)(
 char *reservation_handle,
 globus_gara_reservation_event_t event,
 void *user_parameter);

This is the type of function that must be used for callback functions
.

Functions

Note that all of the functions in GARA return an integer. This integer is the error code, if any
error occurred. See the list of errors under Constants.

globus_gara_reservation_create

int globus_gara_reservation_create(
const char *manager_contact,

DRAFT COPY 15

const char *reservation_specification,
char **reservation_handle);

This function attempts to make a reservation.

In:
manager_contact: The contact string for the gatekeeper that controls access to the

resource manager for the resource you wish to make a reservation with.
reservation_specification: An RSL string describing the attributes you wish to have

for your reservation. See Describing a Reservation Request above.

Out:
reservation_handle: If the reservation was successfully made, a pointer to your

reservation handle will be provided in this parameter. The memory for the
reservation handle is allocated by globus_malloc(), and it is your responsibility
to free the memory with globus_free() when you are done.

globus_gara_reservation_modify

int globus_gara_reservation_modify(
const char *old_reservation_handle,
const char *reservation_specification,
char **new_reservation_handle);

This function attempts to modify a new reservation. Note that if the reservation is changed, you
are provided with a new reservation handle. While current versions of GARA will provide an
identical reservation handle, future versions of GARA may not.

In:
old_reservation_handle: The handle for the reservation that you wish to modify.
reservation_specification: An RSL string describing the new attributes you wish to

have for your reservation. See Describing a Reservation Request above.

Out:
new_reservation_handle: If the reservation was successfully modified, a pointer to

your reservation handle will be provided in this parameter. The memory for the
reservation handle is allocated by globus_malloc(), and it is your responsibility
to free the memory with globus_free() when you are done.

globus_gara_reservation_bind

int globus_gara_reservation_bind(
const char *reservation_handle,
const char *bind_parameters);

This claims a reservation by providing run-time parameters.

DRAFT COPY16

In:
reservation_handle: The handle for the reservation that you wish to bind.
bind_parameters: An RSL string describing the new attributes you wish to have for

your reservation. See Binding a Reservation above.

globus_gara_reservation_unbind

int globus_gara_reservation_unbind(
const char *reservation_handle);

This Òun-claimsÓ a reservation. The reservation is still valid and can be used again by calling
globus_gara_reservation_bind() again.

In:
reservation_handle: The handle for the reservation that you wish to bind.

globus_gara_reservation_status

int globus_gara_reservation_status(
const char *reservation_handle,

 int *status;

This function queries for a reservationÕs status.

In:
reservation_handle: The handle for the reservation that you wish to query.

Out:
status: The status of the reservation. It is one of the constants described in Callback

and Status Constants.

globus_gara_reservation_callback_register

int globus_gara_reservation_callback_register(
const char *reservation_handle,
globus_gara_reservation_callback_t callback_function,
void *user_parameter);

After this function successfully completes, the specified callback function will be called
whenever the status of a reservation changes. It will also be immediately called once to provide
the current status of the reservation. Note that multiple callbacks can be registered for a single
reservation.

In:
reservation_handle: The handle for the reservation for which you wish to receive

callbacks.
callback_function: The function that will be called by GARA when the status of a

reservation changes.

DRAFT COPY 17

user_parameter: The value you provide here will be provided to the callback function
unmodified.

globus_gara_reservation_callback_remove

int globus_gara_reservation_callback_remove(
const char *reservation_handle,
globus_gara_reservation_callback_t callback_function);

After this function successfully completes, the specified callback function will no longer be
called when the status of the reservation changes.

In:
reservation_handle: The handle for the reservation for which you wish to receive

callbacks.
callback_function: The function that will be called by GARA when the status of a

reservation changes.
user_parameter: The value you provide here will be provided to the callback function

unmodified.

globus_gara_reservation_cancel

int globus_gara_reservation_cancel(
const char *reservation_handle);

This cancels a reservation. When a reservation is cancelled, the reservation handle (and copies of
it) may not be used anymore. For example, if you try to bind the cancelled reservation, it will
fail.

In:
reservation_handle: The handle for the reservation that you wish to cancel.

globus_gara_reservation_version

int globus_gara_version(void);

This returns the current version number for GARA.

globus_gara_reservation_client_debug

int globus_gara_client_debug(void);

This enables debugging mode. Output will be printed to stderr.

In:
reservation_handle: The handle for the reservation that you wish to cancel.

DRAFT COPY18

globus_gara_client_error_string

const char *globus_gara_client_error_string(
int error_code);

For any error code returned by GARA, this provides a printable string that corresponds to the
error code.

In:
error_code: The error code for which you wish to obtain a string representation.

DRAFT COPY 19

Appendix: Example Program Using GARA
This code has been greatly simplified but should give you the basic idea of how to use GARA.

#include "globus_gara_client.h"

int reservation_ready = GLOBUS_FALSE;

static void callback_handler(
 char *reservation_handle,
 globus_gara_reservation_event_t event,
 void *user_parameter);

int main(int argc, char **argv)
{
 int error;
 int seconds;
 int test_index;
 char *reservation_handle;
 char *reservation_rsl_string;

 /* Initialize */
 globus_module_activate(GLOBUS_GARA_CLIENT_MODULE);

 /* Make a reservation that starts in 20 seconds and goes for an hour */
 /* Of course, many of the parameters would not actually be static in a
 * real program. */
 reservation_rsl_string = globus_malloc(256);
 sprintf(reservation_rsl_string,
 Ò"&(reservation-type=network)(start-time=%d)(duration=%d) \
(endpoint-a=%s) (endpoint-b=%s) (bandwidth=%d) (protocol=tcp)",
 (int) time(NULL) + 20, 3600,
 Ò128.135.11.1Ó, Ò128.135.11.6Ó, 150);
 error = globus_gara_reservation_create(parameters.gatekeeper_contact,
 reservation_rsl_string, &reservation_handle);

 /* Set up a callback to let us know when the reservation is ready. */
 error = globus_gara_reservation_callback_register(reservation_handle,
 callback_handler, NULL);

 /* Wait for the reservation to become active */
 while (!reservation_ready)
 sleep(1);

 /* Bind the reservation */
 error = globus_gara_reservation_bind(reservation_handle,
 "&(which-endpoint=a) (endpoint-a-port=9999) \
(endpoint-b-port=9999)");

 /* Use the reservation... */
 ;

 /* Remove the callback */

DRAFT COPY20

 error = globus_gara_reservation_callback_remove(reservation_handle,
 callback_handler);

 /* Cancel the reservation */
 error = globus_gara_reservation_cancel(reservation_handle);

 /* Clean up */
 globus_free(reservation_rsl_string);
 globus_free(reservation_handle);
 globus_module_deactivate(GLOBUS_GARA_CLIENT_MODULE);
 return 0;
}

static void callback_handler(
 char *reservation_handle,
 globus_gara_reservation_event_t event,
 void *user_parameter)
{
 if (event.event_type == GLOBUS_GARA_STATUS_EVENT
 && event.event == GLOBUS_GARA_RESERVATION_STATUS_READY_NOT_BOUND)
 {
 reservation_ready = GLOBUS_TRUE;
 }
}

